Affiliation:
1. College of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
2. College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Density functional theory (DFT) was used to investigate the three-component coupling reactions of aldehydes, alkynes, and amines (A3 coupling) using N-heterocyclic carbene silver as the catalyst. This study reveals that the addition reaction between the catalyst N-heterocyclic carbene silver and phenylacetylene (PAE) forms Ag_PAE. Subsequently, one hydrogen atom of the Ag_PAE migrates to the nitrogen atom of the Amine. Thereafter, the amine aldehyde condensation reaction generates a molecule of water and an imine ion with (Path one) or without (Path two) another amine catalyst. Path one has a lower reaction barrier than Path two. Subsequently, the imine ion reacts with silver phenylacetylide to generate the A3 coupling reaction product propargylamine (PPA). Furthermore, the triple bond and −N3 group in PPA undergo a cycloaddition reaction and generate the final product (PR). The entire reaction is strongly exothermic, and, therefore, the reaction is easy to conduct. Moreover, conceptual density functional theory calculations confirm the reaction mechanism. Investigating the mechanism of these reactions will be helpful for understanding and developing new synthesis strategies for similar functional compounds.
Funder
Science and Technology Project of Hebei Education Department
National Natural Science Foundation of China
S&T Program of Hebei
Science and Technology Research Projects of Langfang Normal University
the Fundamental Research Funds for the Universities in Hebei Province
Innovation and Entrepreneurship Training Program of Langfang Normal University
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献