Microemulsion–Assisted Synthesis of Ag2CrO4@MIL–125(Ti)–NH2 Z–Scheme Heterojunction for Visible–Light Photocatalytic Inactivation of Bacteria

Author:

Yuan Haoyu12,Zhang Chao12,Chen Wenjing2,Xia Yuzhou2,Chen Lu2,Huang Renkun2,Si Ruiru3,Liang Ruowen12ORCID

Affiliation:

1. State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, China

2. Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, China

3. Fujian Key Laboratory of Agro–Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China

Abstract

Metal–organic frameworks (MOFs) are new porous materials composed of metal centers and organic ligand bridges, which received great attention in the field of photocatalysis. In this work, Ag2CrO4@MIL–125(Ti)–NH2 (denoted as AgCr@M125) Z–scheme heterojunctions were synthesized via a simple microemulsion method, by which highly dispersed nano–sized Ag2CrO4 can be anchored uniformly on the surfaces of porous MIL–125(Ti)–NH2 (denoted as M125). Compared with pure M125 and Ag2CrO4, the as–prepared AgCr@M125 hybrids show significant photocatalytic efficiency against inactivated Staphylococcus aureus (S. aureus), reaching over 97% inactivation of the bacteria after 15 min of visible light irradiation. Notably, the photocatalytic activity of the obtained 20%AgCr@M125 is about 1.75 times higher than that of AgCr–M125, which was prepared via a traditional precipitation method. The enhanced photocatalytic antibacterial activity of the AgCr@M125 photocatalytic system is strongly ascribed to a direct Z–scheme mechanism, which can be carefully discussed based on energy band positions and time–dependent electron spin response (ESR) experiments. Our work highlights a simple way to enhance the antibacterial effect by coupling with Ag2CrO4 and M125 via a microemulsion–assisted strategy and affords an ideal example for developing MOFs–based Z–scheme photocatalysts with excellent photoactivity.

Funder

Scientific Research Fund Project of Ningde Normal University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3