Ultrasonic Preparation of PN for the Photodegradation of 17β-Estradiol in Water and Biotoxicity Assessment of 17β-Estradiol after Degradation

Author:

Meng Kun1,Zhou Kefu1,Chang Chang-Tang2

Affiliation:

1. Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China

2. Department of Environmental Engineering, National I-Lan University, Yilan 260007, Taiwan

Abstract

This study prepares a novel phosphorene (PN) and loads it onto TiO2 to fabricate PN-TiO2 and effectively photodegrade the hydrophobic environmental hormone 17β-estradiol in aqueous solutions. The effect of the PN on degradation efficiency is systematically investigated. It is observed that the doping of TiO2 with PN significantly enhances its photocatalytic and adsorption properties compared with that in the absence of PN; that is, the addition improves the adsorption capability of the composite. The optimal PN weight content is found to be 0.5%. The performance of the PN-TiO2 photocatalyst in degrading E2 is around 67.5%. However, its photodegradation efficiency gradually decreases when the PN content is further increased. This optimal PN content directly suggests synergistic interactions affecting the photodegrading efficiency. Compared with other PN-based photocatalysts mentioned in the literature, this PN-based material possesses striking advantages, such as higher energy efficiency, greater removal capacity, and superior cost-effectiveness. Further, the decrease in the biotoxicity of the water after treatment is evident in observing the development of zebrafish embryos. The studies of the catalyst performed on the zebrafish show that it results in a higher mortality rate at 96 h with a superior hatching rate and healthy fish development. In summary, the prepared PN-based materials exhibited promising photocatalytic capabilities for the removal and biotoxicity reduction of 17β-estradiol in aqueous solutions.

Funder

National Key Research and Development Program of China

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3