Comparative Studies on Effects of Metal Cation (La) and Non-Metal Anion (N) Doping on CeO2 Nanoparticles for Regenerative Scavenging of Reactive Oxygen Radicals

Author:

Paick Jihun1ORCID,Hong Seunghee1,Jyoung Jy-Young2,Lee Eun-Sook2,Lee Doohwan1

Affiliation:

1. Department of Chemical Engineering, The University of Seoul, Siripdae-gil 13, Jeonnong-dong, Seoul 02504, Republic of Korea

2. JNTG Co., Ltd., 240-11 Naehyangan-gil, Jeongnam-myeon, Hwaseong-si 18523, Republic of Korea

Abstract

The intrinsic effects of metal cation (La) and non-metallic anion (N) doping of CeO2 nanoparticles (NPs) for regenerative scavenging of reactive oxygen radicals were studied. La-doped CeO2 NPs were prepared by the conventional impregnation method at various La doping levels. N-doped CeO2 NPs were prepared by urea thermolysis with two different methods: (i) direct thermolysis of urea after physical mixing with CeO2 NPs and (ii) wet impregnation of CeO2 NPs with urea followed by thermolysis under inert N2 atmosphere. Physicochemical properties of samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and N2 sorption measurement. Radical scavenging properties of the samples were characterized by applying Fenton’s reaction. Results indicated that atomic N doping on CeO2 NPs significantly enhanced radical scavenging properties of CeO2 NPs, resulting in an activity of N-doped CeO2 about 3.6 times greater than the pristine CeO2 NPs and 1.6 times higher than the La-doped CeO2 NPs. This result suggests that anionic N doping of CeO2 NPs is highly effective in enhancing radical scavenging properties of CeO2 NPs, whereas such modifications have been typically practiced by hetero-metal doping with rare earth metal elements. A collective structure–property correlation analysis suggested that enhancement of radical scavenging properties of heteroatom-doped CeO2 NPs was largely attributed to an increase in surface oxygen vacancies on CeO2 NPs due to heteroatom doping.

Funder

The Ministry of Trade, Industry and Energy of Republic of Korea

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3