Photocatalytic Degradation of 1,4-Dioxane by Heterostructured Bi2O3/Cu-MOF Composites

Author:

Wang Wen-Min1,Zhang Lu2,Wang Wen-Long1,Huang Jin-Yi3,Wu Qian-Yuan1,Wu Jerry J.3ORCID

Affiliation:

1. State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

2. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China

3. Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan

Abstract

Photocatalysts exhibiting high activity for the degradation of 1,4-dioxane (1,4-D) have been a subject of intense focus due to their high toxicity and challenging degradability. Bismuth oxide (Bi2O3) is recognized as an ideal photocatalyst; however, there have been limited studies on its effectiveness in 1,4-D degradation. It is crucial to address the issue of low photocatalytic efficiency attributed to the instability and easy recombination of photogenerated electrons and holes in Bi2O3 upon photoexcitation. In this study, Cu-MOF and oxygen vacancy were utilized to improve the 1,4-D photocatalytic degradation efficiency of Bi2O3 by preparing Bi2O3, Bi2O3/Cu-MOF, Bi2O3−x, and Bi2O3−x/Cu-MOF. The results revealed that the incorporation of Cu-MOF induced a larger specific surface area, a well-developed pore structure, and a smaller particle size in Bi2O3, facilitating enhanced visible light utilization and an improved photoelectron transfer rate, leading to the highest photocatalytic activity observed in Bi2O3/Cu-MOF. In addition, oxygen vacancies were found to negatively affect the photocatalytic activity of Bi2O3, mainly due to the transformation of the β-Bi2O3 crystalline phase into α-Bi2O3 caused by oxygen vacancies. Further, the synergistic effect of MOF and oxygen vacancies did not positively affect the photocatalytic activity of Bi2O3. Therefore, the construction of heterojunctions using Cu-MOF can significantly enhance the efficiency of degradation of 1,4-D, and Bi2O3/Cu-MOF appears to be a promising photocatalyst for 1,4-D degradation. This study opens new avenues for the design and optimization of advanced photocatalytic materials with improved efficiency for the treatment of recalcitrant organic pollutants.

Funder

National Science and Technology Council (NSTC), Taiwan

Shenzhen Science, Technology and Innovation Commission, China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3