Fabrication of Reduced Ag Nanoparticle Using Crude Extract of Cinnamon Decorated on ZnO as a Photocatalyst for Hexavalent Chromium Reduction

Author:

Rizki Intan Nurul1,Inoue Takumi2,Chuaicham Chitiphon2ORCID,Shenoy Sulakshana2ORCID,Srikhaow Assadawoot2,Sekar Karthikeyan2ORCID,Sasaki Keiko2ORCID

Affiliation:

1. Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Airlangga University, Surabaya 60115, Indonesia

2. Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan

Abstract

The crude extract of cinnamon (after abbreviated as KM) was used to produce silver nanoparticles (AgKM). This was subsequently utilized for the hydrothermal production of a composite consisting of AgKM decorated on zinc oxide (AgKM/ZnO) as a photocatalyst for reducing hexavalent chromium (Cr(VI)). Several methods e.g., XRD, SEM, TEM, XPS, PL, and RDB-PAS were used to analyze the optical and physicochemical properties of ZnO/AgKM samples in order to better comprehend the impact of the development of the AgKM-ZnO heterojunction in comparison to pure ZnO. In 60 min, the optimized ZnO/AgKM reduced Cr(VI) by more than 98%, with a rate constant 63 times faster than that of pure ZnO. The enhancement of the separation and transportation of photogenerated electron-hole pairs, as proven by a decrease in photoluminescence intensity when compared with ZnO, was attributed to the composite’s higher Cr(VI) reduction rate. Also, the formation of a new electronic level was created when AgKM are loaded on the surface of ZnO in the composites, as shown by the energy-resolved distribution of the electron trap (ERDT) pattern resulting to enhancement of light absorption ability by narrowing the energy band gap. Thus, ZnO/AgKM composite’s photocatalytic efficacy was enhanced by its narrow energy band gap and reduced charge recombination. Therefore, the newly produced ZnO/AgKM composite can be used as a photocatalyst to purify Cr(VI)-containing wastewater.

Funder

Japan Society for the Promotion of Science

Hibah Riset Mandat Universitas Airlangga Indonesia

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3