Preparation and Properties of g-C3N4-TiO2 Cement-Based Materials Supported by Recycled Concrete Powder

Author:

Yuan Teng1,Yao Wu12ORCID

Affiliation:

1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

2. Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China

Abstract

In this paper, recycled concrete powder (RCP) is used as the carrier of g-C3N4-TiO2 instead of natural minerals. The prepared g-C3N4-TiO2/RCP composites were characterized by X-ray diffractometer, scanning electron microscope, infrared spectrometer, specific surface area analyzer, UV-visible spectrophotometer, and RhB solution degradation experiments. The results show that the rough, porous structure of RCP was beneficial to the stable load of g-C3N4-TiO2. Under the condition that the content of g-C3N4-TiO2 catalyst is constant, the agglomeration of g-C3N4-TiO2 can be reduced by using RCP as a carrier, thus improving its photocatalytic efficiency. Subsequently, g-C3N4-TiO2/RCP was loaded onto the surface of cement-based materials by coating bonding method to study its photocatalytic performance. It is found that the photocatalytic cement-based material has a similar degradation effect on the degradation of surface RhB as g-C3N4-TiO2/RCP in RhB solution. Our work may open up a new field for the recycling of RCP and provide new ideas for the development of photocatalytic cement-based materials.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3