Preparation of S-Scheme g-C3N4/ZnO Heterojunction Composite for Highly Efficient Photocatalytic Destruction of Refractory Organic Pollutant

Author:

Sert Buse1,Bilici Zeynep2,Ocakoglu Kasim1ORCID,Dizge Nadir2,Rad Tannaz Sadeghi3,Khataee Alireza34ORCID

Affiliation:

1. Department of Engineering Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400 Tarsus, Turkey

2. Department of Environmental Engineering, Mersin University, 33343 Mersin, Turkey

3. Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey

4. Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran

Abstract

In this study, graphitic carbon nitride (g-C3N4)-based ZnO heterostructure was synthesized using a facile calcination method with urea and zinc nitrate hexahydrate as the initiators. According to the scanning electron microscopic (SEM) images, spherical ZnO particles can be seen along the g-C3N4 nanosheets. Additionally, the X-ray diffraction (XRD) analysis reveals the successful synthesis of the g-C3N4/ZnO. The photocatalytic activity of the synthesized catalyst was tested for the decolorization of crystal violet (CV) as an organic refractory contaminant. The impacts of ZnO molar ratio, catalyst amount, CV concentration, and H2O2 concentration on CV degradation efficiency were investigated. The obtained outcomes conveyed that the ZnO molar ratio in the g-C3N4 played a prominent role in the degradation efficiency, in which the degradation efficiency reached 95.9% in the presence of 0.05 mmol of ZnO and 0.10 g/L of the catalyst in 10 mg/L of CV through 120 min under UV irradiation. Bare g-C3N4 was also tested for dye decolorization, and a 76.4% dye removal efficiency was obtained. The g-C3N4/ZnO was also tested for adsorption, and a 32.3% adsorption efficiency was obtained. Photocatalysis, in comparison to adsorption, had a dominant role in the decolorization of CV. Lastly, the results depicted no significant decrement in the CV degradation efficiency in the presence of the g-C3N4/ZnO photocatalyst after five consecutive runs.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3