An Assessment of Zeolite Framework Effect for Low-Temperature NOX Adsorbers

Author:

Castoldi Lidia1ORCID,Morandi Sara2ORCID,Ticali Pierfrancesco2ORCID,Matarrese Roberto1,Lietti Luca1ORCID

Affiliation:

1. Laboratory of Catalysis and Catalytic Processes, Department of Energy, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy

2. Department of Chemistry, NIS Center and INSTM Reference Center, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy

Abstract

Pd-promoted zeolites (Y, ZSM-5, FER, SSZ-13) were prepared and characterized to analyze their properties as low-temperature NOx adsorbers. The samples were investigated by BET and XRD and by in situ FT-IR spectroscopy of CO and NO adsorption to probe the Pd sites and the nature of the adsorbed NOx species. The NOx adsorption/desorption performances at low temperatures were examined by microreactor measurements upon NO/O2 adsorption followed by TPD in the presence of water and carbon dioxide. It was enlightened that: (i) the zeolite framework influences the Pd dispersion: the smaller the zeolite cage, the higher the Pd dispersion, irrespective of the Si/Al ratio. Accordingly, the following Pd dispersion order has been observed, inversely to the zeolite cage size: Pd/SSZ-13 > Pd/ZSM-5 ~ Pd/FER >> Pd/Y; (ii) Pd is present as isolated Pdn+ species and in PdOx particles; (iii) the Pd dispersion governs the NOx storage capacity: the smaller the zeolite cage, the higher the Pd dispersion and the storage capacity; (iv) NO adsorbs mainly in the form of Pd nitrosyls and nitrates; (v) NO desorption occurs both at a temperature below 200 °C and in a high-temperature range (near 350 °C).

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3