Plant-Based Copper Oxide Nanoparticles; Biosynthesis, Characterization, Antibacterial Activity, Tanning Wastewater Treatment, and Heavy Metals Sorption

Author:

Eid Ahmed M.1ORCID,Fouda Amr1ORCID,Hassan Saad El-Din1ORCID,Hamza Mohammed F.23ORCID,Alharbi Nada K.4ORCID,Elkelish Amr56ORCID,Alharthi Afaf7ORCID,Salem Waheed M.8

Affiliation:

1. Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt

2. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China

3. Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 11728, Egypt

4. Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia

6. Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt

7. Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia

8. Medical Labs Department, Faculty of Applied Health Science Technology, Menoufia University, Shebine El-Koam 32511, Egypt

Abstract

Herein, the aqueous extract of Portulaca oleracea has been used as a safe, cheap, eco-friendly, and applicable scale-up method to bio-fabricate copper oxide nanoparticles (CuO-NPs). The character of CuO-NPs were determined using UV-vis spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive X-ray(EDX), Dynamic light scattering (DLS), and zeta potential. Spherical and crystalline CuO-NPs with a size range of 5–30 nm at a maximum surface plasmon resonance of 275 nm were successfully fabricated. The main components of the green-synthesized particles were Cu and O with weight percentages of 49.92 and 28.45%, respectively. A Zeta-potential value of −24.6 mV was recorded for CuO-NPs, indicating their high stability. The plant-based CuO-NPs showed promising antimicrobial and catalytic activity in a dose-dependent manner. Results showed that the synthesized CuO-NPs had the efficacy to inhibit the growth of pathogens Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans with low MIC values in the ranges of 6.25–25 µg/mL. The highest decolorization percentages of tanning wastewater were attained under sunlight irradiation conditions at a concentration of 2.0 mg/mL after 200 min with percentages of 88.6 ± 1.5% compared to those which were recorded under dark conditions (70.3 ± 1.2%). The physicochemical parameters of tanning wastewater including total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), biological oxygen demand (BOD), and conductivity under optimum conditions were significantly decreased with percentages of 95.2, 86.7, 91.4, 87.2, and 97.2%, respectively. Interestingly, the heavy metals including cobalt (Co), lead (Pb), nickel (Ni), cadmium (Cd), and chromium (Cr (VI)) decreased with percentages of 73.2, 80.8, 72.4, 64.4, and 91.4%, respectively, after treatment of tanning wastewater with CuO-NPs under optimum conditions. Overall, the plant-synthesized CuO-NPs that have antimicrobial and catalytic activities are considered a promising nano-catalyst and environmentally beneficial to wastewater treatment.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3