CO2 Electroreduction to Formate—Comparative Study Regarding the Electrocatalytic Performance of SnO2 Nanoparticles

Author:

Weinrich Henning1ORCID,Rutjens Bastian12ORCID,Basak Shibabrata1ORCID,Schmid Bernhard1ORCID,Camara Osmane1ORCID,Kretzschmar Ansgar1,Kungl Hans1,Tempel Hermann1ORCID,Eichel Rüdiger-A.12ORCID

Affiliation:

1. Institute of Energy and Climate Research–Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

2. Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany

Abstract

SnO2 nanoparticles have frequently been reported as effective electrocatalysts for CO2 electroreduction to formate. However, in the literature, there is little knowledge of SnO2 nanoparticles that guarantee superior electrocatalytic performance. Hence, in this study, several SnO2 nanoparticles are compared with respect to their material properties, and correlations to the electrocatalytic performance are established. For comparison, three custom-made SnO2-electrocatalysts were prepared, reproducing frequently cited procedures in literature. Based on the comparison, it is found that hydrothermal, sol-gel, and solid-state synthesis provide quite different electrocatalysts, particularly in terms of the particle size and crystal lattice defect structure. Desirably small nanoparticles with a comparatively high number of lattice defects are found for the nanoparticles prepared by hydrothermal synthesis, which also provide the best electrocatalytic performance in terms of Faradaic efficiency for the electroreduction of CO2 to formate. However, despite the considerably smaller surface area, the commercial reference also provides significant electrocatalytic performance, e.g., in terms of the overall produced amount of formate, which suggests a surprisingly high surface area-specific activity for this material that is low on defects. Thus, defects do not appear to be the preferred reaction site for the CO2 electroreduction to formate on SnO2 in this case.

Funder

German Federal Ministry of Education and Research

Marie Skłodowska-Curie action

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference49 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3