Recent Progress in Nickel and Silica Containing Catalysts for CO2 Hydrogenation to CH4

Author:

Albeladi Nadiyah1,Alsulami Qana A.1ORCID,Narasimharao Katabathini1ORCID

Affiliation:

1. Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

The recent unusual weather changes occurring in different parts of the world are caused by global warming, a consequence of the release of extreme amounts of greenhouse gases into the atmosphere. Carbon dioxide (CO2) is one of these greenhouse gasses, which can be captured and reused to generate fuel through the methanation process. Nickel- and silica-based catalysts have been recognized as promising catalysts due to their efficiency, availability, and low prices. However, these catalysts suffer from metal sintering at high temperatures. Researchers have achieved remarkable improvements through altering conventional synthesis methods, supports, metal loading amounts, and promoters. The modified routes have enhanced stability and activity while the supports offer large surface areas, dispersion, and strong metal–support interactions. Nickel loading affects the formed structure and catalytic activity, whereas doping causes CO2 conversion at low temperatures and forms basic sites. This review aims to discuss the CO2 methanation process over Ni- and SiO2-based catalysts, in particular the silica-supported Ni metal in previously reported research works and point out directions for potential future work.

Publisher

MDPI AG

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3