Affiliation:
1. Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore 632 014, India
2. Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Abstract
The present work reports the synthesis of biomass derived activated carbon and its electrochemical behaviour in different electrolytes. Ricinus communis shell (RCS) was used as a raw material in this study for the synthesis of activated carbon (AC) following a high-temperature activation procedure using potassium hydroxide as the activating agent. The physical and structural characterization of the prepared Ricinus communis shell-derived activated carbon (RCS-AC) was carried by Brunauer-Emmett-Teller analysis, X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, Raman Spectroscopy and Scanning Electron Microscopy. The synthesized AC was electrochemically characterized using various techniques such as Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) tests, and Electrochemical impedance spectroscopy (EIS) measurements in different aqueous electrolytes (KOH, H2SO4, and Na2SO4). The results show that the double layer properties of the RCS-AC material in different electrolytes are distinct. In specific, the working electrode tested in 3 M KOH showed excellent electrochemical performance. It demonstrated a specific capacitance of 137 F g−1 (at 1 A g−1 in 3 M KOH) and exhibited high energy and power densities of 18.2 W hkg−1 and 663.4 W kg−1, respectively. The observed capacitance in 3 M KOH remains stable with 97.2% even after 5000 continuous charge and discharge cycles, indicating long-term stability. The study confirmed that the synthesized RCS-derived activated carbon (RCS-AC) exhibits good stability and physicochemical characteristics, making them commercially promising and appropriate for energy storage applications.
Funder
King Saud University, Riyadh, Saudi Arabia
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献