Main Routes of Production of High-Value-Added 2,5-Furandincarboxylic Acid Using Heterogeneous Catalytic Systems

Author:

Bueno Ane1,Barredo Asier1,Viar Nerea1ORCID,Requies Jesus1ORCID

Affiliation:

1. Chemical and Environmental Engineering Department, Engineering School of Bilbao, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain

Abstract

The production of polymers from lignocellulosic biomass is currently one of the challenges to minimizing dependence on fossil fuels such as oil. The cellulosic fraction of this feedstock can be transformed into simple sugars such as glucose or fructose. These sugars can be further converted into 2,5-furandicarboxylic acid (FDCA), a precursor of polyethylene furanoate (PEF). The dehydration of sugars to 5-hydroxymethylfurfural (HMF), a platform molecule to obtain products of interest, has been extensively studied. In addition, the oxidation of this platform molecule to FDCA has been widely investigated. However, a study of the direct or one-step production of FDCA from sugars is needed. This review provides a general overview of the recent research on the catalytic systems for the direct production of FDCA from sugars. Ideally, a single-stage system should be employed. The investigations carried out in a one-step process are first detailed. Different strategies have been tested, such as the physical separation of two phases, where dehydration and oxidation took place separately. In this case, an efficient transfer of HMF is needed. To avoid HMF transfer limitations, other authors focused on the investigation of the one-pot transformation of HMF without physical separation. The major requirement of these processes is to achieve catalytic systems functional for both dehydration and oxidation reactions. Therefore, other investigations focused on the study of two-step integrated systems are also analyzed in this review.

Funder

University of the Basque Country

Spanish Ministry of Economy, Industry and Competitiveness

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3