Noble Metal Modified TiO2 Hierarchically Structured Microspheres with Enhanced Photocatalytic Activity

Author:

Huang Haisheng12,Wang Juan123,Kong Qi12,Xu Yao12,Wei Zhishun123ORCID,Chang Ying123

Affiliation:

1. Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China

2. School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China

3. Hubei Longzhong Laboratory, Xiangyang 441000, China

Abstract

Anatase TiO2 hierarchically structured microspheres with co-exposed {001}/{101} facets were prepared by a facile one-pot hydrothermal method. The influences of reaction temperature on the morphology and crystallization of microspheres were investigated systematically. The obtained microspheres possessed better morphology and crystallization when the reaction temperature was 160 °C. Different noble metals (Au, Ag, Cu, Pt, Pd) were used for the microspheres modification, and the experimental results exhibited that the photocatalytic activities of the noble metal modified microspheres were enhanced obviously, especially for the Pt-modified sample (TPt), which showed the highest photocatalytic activity in degradation of tetracycline hydrochloride (the TPt sample showed the largest improvement, i.e., the activity reached 1.47 times higher than that of the bare sample) and hydrogen production (the largest improvement was also observed for the TPt sample, i.e., the activity was more than 30 times as the bare sample, reaching more than 300 μmol·g−1·h−1). Finally, a photocatalytic reaction mechanism involving the synergy of co-exposed {001}/{101} crystal facets with noble metals was proposed according to the as-obtained experimental results.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Hubei province of China

Green Industry Leading Program of Hubei University of Technology

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3