Effect of Ce Content on the Chemical Looping Oxidative Dehydrogenation of Propane to Propylene over a VOx-CeO2/γ-Al2O3 Oxygen Carrier

Author:

Qiang Fangyuan1,Guo Tuo2,Nie Mengdong1,Liu Yongzhuo1ORCID,Wu Man1,Guo Qingjie12ORCID

Affiliation:

1. College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China

2. State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

Abstract

The chemical looping oxidative dehydrogenation of propane to propylene (CL-ODHP) replaces molecular oxygen with lattice oxygen (Olatt) in oxygen carriers. This method boosts propylene selectivity by avoiding the deep oxidation of propane. Herein, a series of 10V-XCe/Al oxygen carriers with different Ce contents were prepared to realize different VOx-CeOy interactions. The effect of the Ce content in 10V-XCe/Al oxygen carriers on the CL-ODHP reaction was studied and the optimal Ce content was determined. CeO2 prevents the outward diffusion and evolution of Olatt in VOx carriers to the adsorbed electrophilic oxygen species (Oelec), effectively inhibiting the loss of Olatt, improving the selectivity of propylene, and extending the lifetime and activity of the oxygen carriers. After characterizing and analyzing the oxygen carriers, it was found that 10V-3Ce/Al has the highest specific surface area, highest oxygen capacity, and lowest reducibility. The 10V-3Ce/Al also delivers the highest oxidative dehydrogenation performance. At 550 °C, the average propylene and COx selectivity values of 10V-3Ce/Al were 81.87% and 7.28%, respectively (vs. 62.79% and 25.64% respectively, for 10V/Al). It is demonstrated that 10V-3Ce/Al exhibits good cycle stability with no significant decrease in catalytic performance after 15 cycles. In situ diffuse-reflectance infrared Fourier-transform spectroscopy indicates that CL-ODHP on 10V-3Ce/Al undergoes the Mars-van Krevelen mechanism. The migration and evolution of Olatt in oxygen carriers is controlled by reasonably modifying the metal oxide interactions to improve propylene yield. This work will thus guide the subsequent development of novel and efficient CL-ODHP oxygen carriers.

Funder

National Natural Science Foundation of China

Shandong provincial natural science foundation

State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering

Natural Science Foundation Project of Ningxia

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3