Recent Advances of Oxygen Carriers for Hydrogen Production via Chemical Looping Water-Splitting

Author:

Chang Wenxi12,Hu Yue23,Xu Weibin23,Huang Chuande2ORCID,Chen Haonan1,He Jiahui1,Han Yujia23,Zhu Yanyan1,Ma Xiaoxun1,Wang Xiaodong2

Affiliation:

1. School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center for the Ministry of Education for Advance Use Technology of Shanbei Energy, Xi’an 710069, China

2. CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Hydrogen is an important green energy source and chemical raw material for various industrial processes. At present, the major technique of hydrogen production is steam methane reforming (SMR), which suffers from high energy penalties and enormous CO2 emissions. As an alternative, chemical looping water-splitting (CLWS) technology represents an energy-efficient and environmentally friendly method for hydrogen production. The key to CLWS lies in the selection of suitable oxygen carriers (OCs) that hold outstanding sintering resistance, structural reversibility, and capability to release lattice oxygen and deoxygenate the steam for hydrogen generation. Described herein are the recent advances in designing OCs, including simple metal oxides (e.g., Fe, Zn, Ce, and Ti-based metal oxides) and composite metal oxides (e.g., perovskite, spinel, and garnets), for different CLWS processes with emphasis on the crucial parameters that determine their redox performance and future challenges.

Funder

National Natural Science Foundation of China

Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3