Feasibility Assessment on Remanufacturing of Ni–Mo/γ–Al2O3 Catalyst for Residue Hydrodesulfurization

Author:

Ahn Seon-Yong1,Na Woo-Jin2ORCID,Kim Kyoung-Jin1,Kim Beom-Jun1,Park Hea-Kyung2,Roh Hyun-Seog1ORCID

Affiliation:

1. Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju 26493, Republic of Korea

2. Department of Materials Science & Chemical Engineering, Hanseo University, 46 Hanseo 1-ro, Heami-myun, Seosan 31962, Republic of Korea

Abstract

Residue hydrodesulfurization (RHDS) is a critical process in the petroleum refining industry for removing sulfur compounds from heavy residual oils. However, catalysts used in RHDS can easily be deactivated by numerous factors, leading to reduced process efficiency and economic benefits. The remanufacturing of spent catalysts can be a useful strategy for extending the lifespan of catalysts, reducing waste, and improving process sustainability. This paper proposes an effective catalyst remanufacturing process for commercial RHDS catalysts. In detail, sequential unit processes including oil washing (OW), complete incineration (CI), and acid leaching (AL) were conducted to remanufacture the spent RHDS catalysts. We also highlight some of the key challenges in remanufacturing catalysts, such as the key factors involved in catalyst deactivation. Finally, we provide future perspectives on the development of an effective catalyst remanufacturing process for RHDS, with the goal of improving the efficiency, sustainability, and competitiveness of the petroleum refining industry.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3