On the Effect of the Nature of Carbon Nanostructures on the Activity of Bifunctional Catalysts Based on Manganese Oxide Nanowires

Author:

Villanueva-Martínez Nicolás Ignacio1ORCID,Alegre Cinthia1ORCID,Sebastián David1ORCID,Orozco Nataly1,Lázaro María Jesús1ORCID

Affiliation:

1. Instituto de Carboquímica–CSIC, Calle Miguel Luesma Castán, 4, 50018 Zaragoza, Spain

Abstract

Manganese oxide nanowires (MONW) combined with carbon nanostructures were synthesized using three different carbon materials, and their effect on the activity towards Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER) was investigated in alkaline electrolytes. The carbon structures were carbon nanofibers (CNF), multiwall carbon nanotubes (CNT) and reduced graphene oxide (rGO). Both MONW and carbon nanostructures were characterized by X-ray diffraction, scanning and transmission electron microscopy, N2 physisorption and X-ray photoelectron spectroscopy. The electrochemical activity was assessed in a three-electrode cell. Composite MONW/CNF showed the best activity towards ORR, and MONW/rGO exhibited the highest activity towards OER of the series. The addition of the carbon nanostructures to MONW increased the number of electrons transferred in the ORR, indicating a synergistic effect between the carbon and manganese oxide structures due to changes in the reaction pathway. The analysis of Tafel slopes and electrochemical impedance spectroscopies showed that carbons and MONW catalyze different steps of the reactions, which explains the better activity of the composites. This led us to synthesize a MONW/rGO-CNF composite, where rGO-CNF is a hybrid carbon material. Composite MONW/rGO-CNF showed an improved activity towards ORR, close to the benchmark Pt/C catalyst, and activity towards OER, close to MONW/rGO, and better than the benchmark IrO2 catalyst. It also showed remarkable stability in challenging operation conditions.

Funder

Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación

European Union and the NextGeneration EU program

Gobierno de Aragón

Universidad de Zaragoza

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3