Photogenerated Carrier-Assisted Electrocatalysts for Efficient Water Splitting

Author:

Li Xiang1,Zheng Xueyan1,Zhen Yanzhong1,Liang Yucang2ORCID

Affiliation:

1. Yan’an Key Laboratory of Green Hydrogen Energy and Biomass Catalytic Conversion, School of Chemistry & Chemical Engineering, Yan’an University, Yan’an 716000, China

2. Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

Abstract

Electrocatalysts are the core component of electrocatalytic water splitting for improving its overall energy conversion efficiency and reducing the energy input. At present, the design of efficient electrocatalysts mainly focuses on optimizing their electronic structure and local reaction microenvironment to improve the adsorption of reaction intermediates. Although many effective strategies (such as heteroatom doping, vacancy, heterojunction construction, strain engineering, and phase transformation) have been developed, the improvement in catalytic activity has been very limited. Hence, the development of innovative strategies to enhance the optimization of photoelectroactivity is desirable. Inspired by the strategy of applying a potential field to reduce carrier radiation recombination in traditional photoelectrocatalysis, photogenerated carrier-assisted electrocatalysis, based on the synergy effect of light and electric energy, provides a new strategy to enhance the intrinsic activity of water splitting. The essence of the photo-assisted strategy can be attributed to the injection of hot carriers and photogenerated electron–hole pairs or the accelerated reaction kinetics caused by local temperature rises. The photogenerated carrier-assisted strategy has received wide attention due to its simplicity and efficiency. In this review, we focus on the recent advances in photogenerated carrier-assisted strategies (PCAS) for enhancing the performance of HER, OER, and overall water splitting. The possible mechanisms are addressed and the basic composition and latest progress in photo-assisted electrocatalysts using PCAS are summarized. Finally, the challenges and development prospects of PCAS will be detailed.

Funder

the Major Research and Development Project of Central Government Guides Local Science and Technology Development Professional Technology Innovation Platform

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3