Surface Plasmon Resonance Induced Photocatalysis in 2D/2D Graphene/g-C3N4 Heterostructure for Enhanced Degradation of Amine-Based Pharmaceuticals under Solar Light Illumination

Author:

Al Marzouqi Faisal1,Selvaraj Rengaraj2

Affiliation:

1. Department of Engineering, International Maritime College Oman, National University of Science and Technology, Falaj Al Qabail, P.O. Box 532, Suhar 322, Oman

2. Department of Chemistry, College of Science, Sultan Qaboos University, Al-Khoudh, P.O. Box 36, Muscat 123, Oman

Abstract

Pharmaceuticals, especially amine-based pharmaceuticals, such as nizatidine and ranitidine, contaminate water and resist water treatment. Here, different amounts of graphene sheets are coupled with g-C3N4 nanosheets (wt% ratio of 0.5, 1, 3 and 5 wt% of graphene) to verify the effect of surface plasmon resonance introduced to the g-C3N4 material. The synthesized materials were systematically examined by advanced analytical techniques. The prepared photocatalysts were used for the degradation of amine-based pharmaceuticals (nizatidine and ranitidine). The results show that by introducing only 3 wt% graphene to g-C3N4, the absorption ability in the visible and near-infrared regions dramatically enhanced. The absorption in the visible range was 50 times higher when compared to the pure sample. These absorption features suggest that the surfaces of the carbon nitride sheet are covered by the graphene nanosheet, which would effectively apply the LSPR properties for catalytic determinations. The enhancement in visible light absorption in the composite was confirmed by PL analysis, which showed greater inhibition of the electron-hole recombination process. The XRD showed a decrease in the (002) plan due to the presence of graphene, which prevents further stacking of carbon nitride layers. Accordingly, the Gr/g-C3N4 composite samples exhibited an enhancement in the photocatalytic performance, specifically for the 5% Gr/g-C3N4 sample, and close to 85% degradation was achieved within 20 min under solar irradiation. Therefore, applying the Gr/g-C3N4 for the degradation of a pharmaceutical can be taken into consideration as an alternative method for the removal of such pollutants during the water treatment process. This enhancement can be attributed to surface plasmon resonance-induced photocatalysis in a 2D/2D graphene/g-C3N4 heterostructure.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3