Coupling the Piezoelectric Effect and the Plasmonic Effect to Enhance the Photocatalytic Degradation of Ciprofloxacin in Au-Ferroelectric Bi4Ti3O12 Nanofibers

Author:

Meng Chao12ORCID,Peng Junfeng3,Wang Lei1,Han Hao1,Yang Kai4ORCID,You Daotong3

Affiliation:

1. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China

2. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China

3. School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

4. Institute of Photonics Technology, Jinan University, Guangzhou 511443, China

Abstract

In this study, ferroelectric Bi4Ti3O12 and Au-Bi4Ti3O12 nanofibers were synthesized by electrospinning and ion sputtering. The piezoelectric effect of Bi4Ti3O12 and the surface plasmon effect of Au were used to improve the photogenerated electron–hole separation and optical absorption. The results of the characterization showed successful preparation of the orthorhombic Bi4Ti3O12 nanofibers, in which the absorption band edge was 426 nm with a 2.91 eV band gap. The piezo-photocatalytic activity of the Bi4Ti3O12 was tested through the degradation of the antibiotic ciprofloxacin under three different experimental conditions: light, vibration, and light plus vibration. All of the ciprofloxacin was degraded after 80 min in piezo-photocatalytic conditions, with a piezo-photocatalytic degradation rate of 0.03141 min−1, which is 1.56 and 3.88 times, respectively, that of photocatalysis and piezo-catalysis. After loading Au on the Bi4Ti3O12, the degradation efficiency was improved under all three conditions, and the piezoelectric photocatalytic efficiency of Au-Bi4Ti3O12 for ciprofloxacin degradation was able to reach 100% in 60 min with a piezo-photocatalytic degradation rate of 0.06157 min−1. The results of the photocurrent and impedance tests indicated that the photocurrent density of Bi4Ti3O12 nanofibers loaded with Au is increased from 5.08 × 10−7 A/cm2 to 8.17 × 10−6 A/cm2, which is 16.08 times higher than without loading the Au. This work provides an effective way to improve the conversion efficiency of photocatalysis to degrade organic pollutants by combining the plasmon effect and the piezoelectric effect.

Funder

The Open Project Program of the State Key Laboratory of NBC Protection for Civilian

The Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment

The special funding project for the construction of high-level teachers of the Beijing Institute of Fashion Technology

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3