The Effect of Metal Ratio and Precipitation Agent on Highly Active Iron-Manganese Mixed Metal Oxide Catalysts for Propane Total Oxidation

Author:

Shah Parag1,Bailey Liam1ORCID,Morgan David1ORCID,Taylor Stuart1ORCID

Affiliation:

1. Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cardiff CF24 4HQ, UK

Abstract

Iron-manganese mixed metal oxide catalysts with a range of Fe:Mn ratios were synthesised by co-precipitation using sodium carbonate and evaluated for total propane oxidation. The Fe0.50Mn0.50Ox catalyst was the most active, and this was due to increased surface area along with the formation of a Mn2O3 phase that was not present in the other catalysts. The effect of the precipitating agent was evaluated with the Fe0.50Mn0.50Ox catalyst, investigating preparation using (NH4)2CO3, K2CO3, NH4OH, KOH, and NaOH. In almost all cases, the activity of propane oxidation was increased compared to the Na2CO3-prepared catalyst, with the hydroxide-precipitated catalysts generally being more active than the carbonates. The NH4OH catalyst was the best performing and this was thought to be due to the formation of a highly active mixed defect spinel structure. Results demonstrate that highly active mixed metal oxide total oxidation catalysts can be prepared using abundant elements, and the choice of precipitating agent is important to maximise the activity.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3