Stability Enhancement of Aldehyde Dehydrogenase from Anoxybacillus geothermalis Strain D9 Immobilized onto Seplite LX120

Author:

Latip Wahhida1ORCID,Rosli Nur Ezzati1,Ali Mohd Shukuri Mohamad12,Kamarudin Nor Hafizah Ahmad13,Rahman Raja Noor Zaliha Raja Abd14ORCID

Affiliation:

1. Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia

2. Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia

3. Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia

4. Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia

Abstract

Enzyme stability is regarded as an important criterion for an industrial biocatalyst. Aldehyde dehydrogenase (ALDH) from A. geothermalis strain D9 was previously reported to exhibit good thermostability. However, this enzyme is still not suited to use in harsh environments. In this current work, we aim to see the viability of ALDH in terms of stability when immobilized into Seplite LX120. The purified ALDH was successfully immobilized via physical adsorption at 4 h with 1.25 mg/mL enzyme loading. The immobilized ALDH exhibited improved stability compared to free ALDH as the optimum temperature increased up to 80 °C and was stable with temperatures ranging from 30 to 90 °C. It was also stable in broad pH, ranging from pH 4 to pH 12. Moreover, more than 50% of the immobilized ALDH activity was retained after being stored at 25 °C and 4 °C for 9 and 11 weeks, respectively. The reusability of immobilized ALDH is up to seven cycles. The corroboration of ALDH immobilized on the Seplite LX120 was verified via Fourier-transform infrared spectroscopy, scanning electron microscopy, and a reduction in the surface area. The improved features of immobilized ALDH, especially in enzyme stability, are important for future applications.

Funder

Universiti Putra Malaysia

PETRONAS Research Sdn Bhd

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3