Engineering the Mechanically Mixed BaMnO3-CeO2 Catalyst for NO Direct Decomposition: Effect of Thermal Treatment on Catalytic Activity

Author:

Ning Huanghao12,Ji Wenxue12,Li Yongdan3,Zhang Cuijuan12

Affiliation:

1. Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

3. Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, P.O. Box 16100, FI-00076 Espoo, Finland

Abstract

A 5 wt% BaMnO3-CeO2 composite catalyst prepared by the one-pot method exhibits extraordinary catalytic performance for nitrogen monoxide (NO) direct decomposition into N2 and O2; however, the reasons for the high activity remain to be explored. Here, the catalyst was prepared by mechanical mixing and then subjected to thermal treatment at different temperatures (600–800 °C) to explore the underlying reasons. The thermal pre-treatment at temperatures higher than 600 °C can improve the catalytic activity of the mechanically mixed samples. The 700 °C-treated 5%BaMnO3-CeO2 sample shows the highest activity, with NO conversion to N2 of 13.4%, 40.6% and 57.1% at 600, 700, and 800 °C, respectively. Comparative activity study with different supports (ZrO2, TiO2, SiO2, Al2O3) reveals that CeO2 is indispensable for the high performance of a BaMnO3-CeO2 composite catalyst. The Ce species (mainly Ce3+) in CeO2 components diffuse into the lattice of BaMnO3, generating oxide ion vacancy in both components as evidenced by X-ray photoelectron spectroscopy and Raman spectra, which accelerates the rate-determining step and thus higher activity. The chemisorption results show that the interaction between BaMnO3 and CeO2 leads to higher redox activity and mobility of lattice oxygen. This work demonstrates that engineering the oxide ion vacancy, e.g., by thermal treatment, is an effective strategy to enhance the catalytic activity towards NO direct decomposition, which is expected to be applicable to other heterogeneous catalysts involving oxide ion vacancy.

Funder

National Natural Science Foundation of China

Program of Innovative Research Teams in Universities

Tianjin University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3