Affiliation:
1. Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
2. Laboratoire Catalyse et Spectrochimie, ENSICAEN, UNICAEN, Normandie Université, CNRS, 14000 Caen, France
Abstract
CO2 methanation is an attractive reaction to convert CO2 into a widespread fuel such as methane, being the combination of catalysts and a dielectric barrier discharge (DBD) plasma responsible for synergistic effects on the catalyst’s performances. In this work, a Ru-based zeolite catalyst, 3Ru/CsUSY, was synthesized by incipient wetness impregnation and characterized by TGA, XRD, H2-TPR, N2 sorption and CO2-TPD. Catalysts were tested under thermal and plasma-assisted CO2 methanation conditions using in-situ operando FTIR, with the aim of comparing the mechanism under both types of catalysis. The incorporation of Ru over the CsUSY zeolite used as support induced a decrease of the textural properties and an increase of the basicity and hydrophobicity, while no zeolite structural damage was observed. Under thermal conditions, a maximum CO2 conversion of 72% and CH4 selectivity above 95% were registered. These promising results were ascribed to the presence of small Ru0 nanoparticles over the support (16 nm), catalyst surface hydrophobicity and the presence of medium-strength basic sites in the catalyst. Under plasma-catalytic conditions, barely studied in similar setups in literature, CO2 was found to be excited by the plasma, facilitating its adsorption on the surface of 3Ru/CsUSY in the form of oxidized carbon species such as formates, aldehydes, carbonates, or carbonyls, which are afterwards progressively hydrogenated to methane. Adsorption and surface reaction of key intermediates, namely formate and aldehydic groups, was observed even on the support alone, an occurrence not reported before for thermal catalysis. Overall, similar reaction mechanisms were proposed for both thermal and plasma-catalysis conditions.
Funder
framework of Plasma Catalysis CO2 Recycling
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
Fundação para a Ciência e Tecnologia (FCT) for CQE funding
Carmen Bacariza contract
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献