Affiliation:
1. Department of Chemistry, “Alexandru Ioan Cuza” University, 11 Carol I Blvd., 700506 Iasi, Romania
2. “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
3. Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University, 11 Carol I Blvd, 700506 Iasi, Romania
Abstract
Recently, the ultrasound-assisted sol-gel synthesis procedure of mesoporous titania (TiO2) photocatalysts caught the researcher’s attention, due to the physicochemical properties enhancement of the resulting titania nanomaterials. Thus, by varying different synthesis parameters particular characteristics could be obtained. In the present study, the ultrasound pulse on/off ratio has been considered and the effect of the envisaged parameter on the textural, morphological, and optical features of titania nanomaterial has been investigated. Therefore, X-ray Diffraction (XRD), Fourier-Transform Infrared spectroscopy (FTIR), N2-sorption measurements, SEM imaging, and UV-Vis Diffuse Reflectance spectroscopy (UVDR) have been used. And further, the photocatalytic activity of the prepared TiO2 materials was evaluated by the features developed about the applied ultrasound pulse on/off ratio as 1/1, 2/1, 3/1, 4/1, 1/3 and 2/2. It was found that the ultrasound pulse on/off ratio considered in the synthesis procedure of titania leads to TiO2 materials with different textural (SBET = 98–156 m2/g), morphological, and optical (Eg = 3.1–3.2 eV) characteristics. For this reason, TiO2 nanomaterials prepared were found to exhibit suitable features for photocatalytic applications. Thus, the TiO2 4.1 sample prepared at 4/1 ultrasound pulse on/off ratio revealed the highest photodegradation efficiency of Congo Red dye (98.28%) as the results of photocatalytic tests show. More than that, a possible reaction mechanism of the CR photodegradation process through the contribution of reactive oxygen species (·HO, ·O2−), holes (h+), and electrons (e−) of developed titania photocatalyst was proposed.
Funder
Ministry of Research and Innovation, CNCS-UEFISCDI
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science