Plasma-Enhanced Chemical Looping Oxidative Coupling of Methane through Synergy between Metal-Loaded Dielectric Particles and Non-Thermal Plasma

Author:

Kang Shunshun1234,Deng Jinlin1234,Wang Xiaobo1234,Zhao Kun1234,Zheng Min5ORCID,Song Da1234,Huang Zhen1234,Lin Yan1234ORCID,Liu Anqi1234,Zheng Anqing1234,Zhao Zengli1234

Affiliation:

1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China

3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. State Key Laboratory of Complex Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650031, China

Abstract

A plasma–catalyst hybrid system has been developed for the direct conversion of methane to C2+ hydrocarbons in dielectric barrier discharge (DBD) plasma. TiO2 presented the highest C2+ yield of 11.63% among different dielectric materials when integrated with DBD plasma, which made us concentrate on the TiO2-based catalyst. It was demonstrated that MnTi catalyst showed the best methane coupling performance of 27.29% C2+ yield with 150 V applied voltage, without additional thermal input. The catalytic performance of MnTi catalyst under various operation parameters was further carried out, and different techniques, such as X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and H2-temperature-programmed reduction were used to explore the effect of Mn loading on methane oxidative coupling (OCM) performance. The results showed that applied voltage and flow rate had a significant effect on methane activation. The dielectric particles of TiO2 loaded with Mn not only synergistically affected the coupling reaction, but also facilitated charge deposition to generate a strong local electric field to activate methane. The synergy effects boosted the OCM performance and the C2+ yield became 1.25 times higher than that of the undoped TiO2 under identical operating conditions in plasma, which was almost impossible to occur even at 850 °C on the MnTi catalyst in the absence of plasma. Moreover, the reaction activity of the catalyst was fully recovered by plasma regeneration at 300 °C and maintained its stability in for at least 30 consecutive cyclic redox tests. This work presents a new opportunity for efficient methane conversion to produce C2+ at low temperatures by plasma assistance.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association, CAS

Yunnan Basic Research Program Project

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3