Generation Mechanism of the Defects in g-C3N4 Synthesized in N2 Atmosphere and the Method for Improving Photocatalysis Activity

Author:

Chang Xinye1,Fan Huiqing1ORCID,Lei Lin1,Wu Xiaobo1ORCID,Wang Weijia1,Ma Longtao2ORCID

Affiliation:

1. State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

2. Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

One of the most important methods for modifying semiconductors is defect engineering, but only the right quantity of defects in the right chemical environment can produce desirable results. Heat treatment processes associated with g-C3N4 are occasionally carried out in N2 atmosphere, however, the catalytic performance of g-C3N4 produced by direct condensation of only nitrogen-rich precursors in N2 atmosphere is often unsatisfactory. This is typically attributed to the introduction of numerous defects, but the actual relationship between the formation of defects and the N2 atmosphere is rarely explained, and the resulting quantity of defects is difficult to control. We propose that the melam to melem transition is restricted due to the lack of O2 during the heat treatment of the nitrogen-rich precursor of g-C3N4 in N2 atmosphere, which leads to a substantial quantity of defects in the synthesized g-C3N4. To enhance its photocatalytic property, we propose a method to reduce the quantity of defects due to calcinating in N2 atmosphere by protonating the precursor in a way that increases the polymerization of the product. The test analysis indicated that only a moderate quantity of defects that contribute to electron excitation and enhance the separation efficiency and density of photogenerated carriers were retained, and the hydrogen evolution performance of the prepared catalyst was significantly improved.

Funder

National Key Research and Development Project

Shaanxi Provincial Science Foundation

National Natural Science Foundation of China

SKLSP Project

111 Program of MOE

Fundamental Research Funds for the Central Universities

Analytical &Testing Center of Northwestern Polytechnical University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3