CO Oxidation Catalyzed by Au Dispersed on SBA-15 Modified with TiO2 Films Grown via Atomic Layer Deposition (ALD)

Author:

Qin Xiangdong1,Ke Wang1,Vazquez Yovanny1,Lee Ilkeun1,Zaera Francisco1ORCID

Affiliation:

1. Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, CA 92521, USA

Abstract

It has been established that gold, when in nanoparticle (NP) form and in contact with reducible oxides, can promote oxidation reactions under mild conditions. Here, we report results from our exploration of the catalytic oxidation of carbon monoxide using catalysts where Au NPs were combined with thin titanium oxide films deposited on SBA-15 using atomic layer deposition (ALD). Both orders of deposition, with TiO2 added either before or after Au dispersion, were tested for two titania film thicknesses amounting to about half and full TiO2 monolayers. The resulting catalysts were characterized using various techniques, mainly electron microscopy and N2 adsorption–desorption isotherms, and the kinetics of the oxidation of CO with O2 were followed using infrared absorption spectroscopy. A synergy between the Au and TiO2 phases as it relates to the bonding and conversion of CO was identified, the tuning of which could be controlled by varying the synthetic parameters. The ALD of TiO2 films proved to be an effective way to maximize the Au-TiO2 interface sites, and with that help with the activation of molecular oxygen.

Funder

U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Transformations Division, Catalysis Science Program

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3