Binder-Free Supercapacitors Based on Thin Films of MWCNT/GO Nanohybrids: Computational and Experimental Analysis

Author:

Pandey Sandeep,Pathak Mayank,Karakoti Manoj,Tatrari Gaurav,Shantibhusan Boddepalli,Dhapola Pawan Singh,Dhali Sunil,Srivastava AnuragORCID,Rana SravendraORCID,Sahoo Nanda GopalORCID

Abstract

This work reports an innovative approach to the fabrication of free-standing thin films of multiwalled carbon nanotubes (MWCNTs)/graphene oxide (GO) nanohybrids by using dimethyl formamide (DMF) and n-hexane as a solvent–antisolvent system for the growth of thin films of MWCNTs/GO nanohybrids. The synthesis of the GO was carried out by using the modified Hummers method, while the synthesis of MWCNTs/GO nanohybrids was done by the intermixing of the carboxylic acid functionalized MWCNT and GO using the solution-mixing method. The growth of the thin film of MWCNTs/GO nanohybrids was done by obeying the surface-tension-driven phenomena which occur mainly due to the coalescence of bubbles due to the solvent–antisolvent interfacial tension. Furthermore, density functional theory (DFT)-based first-principles simulations were performed to understand the structural, electronic, and capacitive aspects of MWCNT/GO nanohybrids. The computational results demonstrated excellent quantum capacitance in the MWCNT/GO nanohybrid electrodes. Inspired by the computational results, the same process elaborated above has also been employed to develop binder-free supercapacitor devices utilizing the MWCNT/GO nanohybrid as an electrode material. The electrochemical performance of this electrode in 1 M aqueous H2SO4 demonstrates a good energy density of 21.63 WhKg−1 at a current density of 0.5 Ag−1, with a high specific capacitance of 369.01 F/g at the scan rate of 2 mVs−1 and excellent cyclic stability of 97% for 5000 charge–discharge cycles.

Funder

NMHS

DST INSPIRE Division

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3