Hydrothermally Derived Mg-Doped TiO2 Nanostructures for Enhanced H2 Evolution Using Photo- and Electro-Catalytic Water Splitting

Author:

Fazil Mohd1ORCID,Alshehri Saad M.2,Mao Yuanbing3ORCID,Ahmad Tokeer1ORCID

Affiliation:

1. Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India

2. Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, USA

Abstract

Mg-doped TiO2 nano-structures in different compositions (1, 2.5 and 5%) were successfully synthesized by low-temperature hydrothermal route. X-ray diffraction and electron microscopic studies were used to investigate the crystal structure, surface morphology and particle size of the as-synthesized materials. Raman studies were carried out to elucidate the phase identification and the modes of vibrations to determine the impact of dopant ion on the crystal structures. The band gap was estimated using UV-DRS studies whereas, BET surface area analysis revealed an increase in the surface area of increasing Mg2+ ions concentration in TiO2 nanostructures. Among the synthesized various composition of nano-structures, 5% Mg-doped TiO2 photocatalyst showed maximum hydrogen evolution activity (38.96 mmol gcat−1) in an 8-hour (h) analysis cycle. Moreover, the 2.5% Mg-doped TiO2 nanocatalyst with tafel slopes of 123.5 and 126.7 mV/dec showed strong activity for both HER in 0.5N H2SO4 and 0.1N KOH, with an onset potential of 0.96 V (at 10 mA/cm2) and −1.38 V (at 1 mA/cm2) for HER, respectively. Experimental investigations deduced that the incorporation of Mg2+ ions in the TiO2 resulted in the increase of hydrogen generation catalytic activity of titanium dioxide owing to the synergistic effect provided by the remarkable surface area and the presence of defects introduced by doping.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3