Boosting the Photoreactivity of g-C3N4 towards CO2 Reduction by Polymerization of Dicyandiamide in Ammonium Chloride

Author:

Wang Zhi1,Chang Shixin1,Yu Mengxue1,Zhao Zaiwang23ORCID,Li Qin1,Lv Kangle1ORCID

Affiliation:

1. College of Resources and Environment, South-Central Minzu University, Wuhan 430074, China

2. College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010070, China

3. College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010070, China

Abstract

As a typical organic semiconductor photocatalyst, graphitic carbon nitride (g-C3N4) suffers from low photocatalytic activity. In this paper, g-C3N4 was prepared by polymerization of dicyandiamide (C2H4N4) in the presence of ammonium chloride (NH4Cl). It was found that the addition of ammonium chloride can greatly improve the photocatalytic activity of g-C3N4 towards CO2 reduction. The optimal photocatalyst (CN-Cl 20) exhibited a CO2-to-CO conversion activity of 50.6 μmolg−1h−1, which is 3.1 times that of pristine bulk g-C3N4 (BCN) that was prepared in the absence of any ammonium chloride. The enhanced photoactivity of g-C3N4 was attributed to the combined effects of chloride modification and an enlarged specific surface area. Chloride modification of g-C3N4 can not only reduce the bandgap, but also causes a negatively shifted conduction band (CB) potential level, while ammonia (NH3) gas from the decomposition of NH4Cl can act as a gas template to exfoliate layered structure g-C3N4, improving the specific surface from 6.8 to 21.3 m2g−1. This study provides new ideas for the synthesis of highly efficient g-C3N4-based photocatalytic materials for CO2 conversion and utilization.

Funder

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation of Huangshi, China

Fundamental Research Funds for the Central Universities, South-Central Minzu University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3