Optimization Study on Synergistic System of Photocatalytic Degradation of AR 26 and UV-LED Heat Dissipation

Author:

Wang Chen1ORCID,Bai Haoliang1,Kang Xue23

Affiliation:

1. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China

2. School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China

3. Dezhou Industrial Technology Research Institute of North University of China, Dezhou 253000, China

Abstract

In this work, a novel UV-LED/TiO2 photocatalytic system, having a single layer with ten LED beads, was designed to simultaneously achieve UV-LED cooling and wastewater degradation, to deal with heat dissipation problems of high-power UV-LEDs. To gain more insight into this system, the parameters affecting both cooling and photocatalytic performance were first optimized using AR 26 as a basis. With respect to sewage, sewage with a flow rate of 80 mL/min and a temperature of 20 °C helped to keep a lower temperature of UV-LED, which benefits the long-term operation stability of LED beads. For parameters affecting the photocatalytic performance only, the experiments showed that TiO2 with moderate dosing (0.75 g/L) under strong acid conditions (pH = 2) helped to further improve photocatalytic activity when the initial concentration of AR 26 was 45 mg/L. Lastly, to illustrate the advantages of this novel system, the performance of the synergistic system was compared with a conventional photocatalytic reactor with respect to degradation performance, optical quantum efficiency, and energy consumption. The results showed that the degradation efficiency and light source utilization ratio of this coupled system were, respectively, 2.1 times and 1.5 times as much as those of a conventional reactor. As the unit power consumption of the synergistic system was only 0.18-fold more than that of a conventional reactor, our work suggests that this synergistic system with the advantage of LED lamp beads has a bright future in dealing with refractory organic pollutants of sewage.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3