CO2 Hydrogenation to Methanol on CuO-ZnO/SiO2 and CuO-ZnO/CeO2-SiO2 Catalysts Synthesized with β-Cyclodextrin Template

Author:

Vertepov Andrey E.1,Fedorova Anna A.1,Batkin Alexander M.23,Knotko Alexander V.1,Maslakov Konstantin I.1ORCID,Doljenko Vladimir D.12ORCID,Vasiliev Alexander V.1,Kapustin Gennadiy I.2,Shatalova Tatyana B.1ORCID,Sorokina Nadezhda M.1,Kustov Leonid M.123,Morozov Igor V.1,Kustov Alexander L.123

Affiliation:

1. Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia

2. Laboratory of Development and Research of Polyfunctional Catalysts, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia

3. Laboratory of Nanochemistry and Ecology, Institute of Ecotechnologies, National University of Science and Technology “MISiS”, 119049 Moscow, Russia

Abstract

A series of mixed copper (II)—zinc oxide catalysts supported on unmodified and ceria-modified silica supports were synthesized using β-cyclodextrin as a template. The novelty of this work lies in the use of cyclosextrins for the template synthesis of catalyst supports. The obtained samples were analyzed by XRD, SEM-EDX, low-temperature nitrogen physisorption, XPS, and EPR. The magnetic properties of the catalysts were also measured. The thermal decomposition of precursors was analyzed by TGA combined with mass-spectrometric analysis of the evolved gases. The effects of the support pore size, the nature of the active phase and its loading, as well as the sequence of component deposition on the catalyst performance in the CO2 conversion to methanol were studied. The catalysts with cerium added at the gelation stage demonstrated the best performance. The selectivity of these samples reaches values of more than 90% over a fairly ide temperature range, with the productivity reaching 480 g/kg cat·h at 300 °C.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

«Priority-2030» academic leadership selectivity program

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3