Synthesis of Co,Ce Oxide Nanoparticles Using an Aerosol Method and Their Deposition on Different Structured Substrates for Catalytic Removal of Diesel Particulate Matter

Author:

Godoy María Laura1ORCID,Banús Ezequiel David1ORCID,Bon Micaela1,Miró Eduardo Ernesto1,Milt Viviana Guadalupe1ORCID

Affiliation:

1. Instituto de Investigaciones en Catálisis y Petroquímica—INCAPE (UNL, CONICET), Facultad de Ingeniería Química, Santiago del Estero 2829, Santa Fe S3000AOM, Argentina

Abstract

The synthesis of Co and Ce oxide nanoparticles using precipitation of precursor salt solutions in the form of microdroplets generated with a nebulizer proved to be an efficient, fast and inexpensive method. Different morphologies of single oxides particles were obtained. Ceria nanoparticles were almost cube-shaped of 8 nm average size, forming 1.3–1.5 μm aggregates, whereas cobalt oxide appeared as rounded-edged particles of 37 nm average size, mainly forming nanorods 50–500 nm. Co3O4 and CeO2 nanoparticles were used to generate structured catalysts from both metallic (stainless steel wire mesh monoliths) and ceramic (cordierite honeycombs) substrates. Ceria Nyacol was used as a binder to favor the anchoring of catalytic particles thus enhancing the adhesion of the coating. The resulting structured catalysts were tested for the combustion of diesel soot with the aim of being used in the regeneration of particulate filters (DPFs). The performance of these structured catalysts was similar to or even better than that exhibited by the catalysts prepared using commercial nanoparticles. Among the catalysts tested, the structured systems using ceramic substrates were more efficient, showing lower values of the maximum combustion rate temperatures (TM = 410 °C).

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Universidad Nacional del Litoral

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3