Oxidative N-Dealkylation of N,N-Dimethylanilines by Non-Heme Manganese Catalysts

Author:

Meena Bashdar I.ORCID,Lakk-Bogáth Dóra,Török Patrik,Kaizer JózsefORCID

Abstract

Non-heme manganese(II) complexes [(IndH)MnIICl2] (1) and [(N4Py*)MnII(CH3CN)](ClO4)2 (2) with tridentate isoindoline and pentadentate polypyridyl ligands (IndH = 1,3-bis(2′-pyridylimino)isoindoline; N4Py* = N,N-bis(2-pyridylmethyl)-1,2- di(2-pyridyl)ethylamine) proved to be suitable to catalyze the oxidative demethylation of N,N-dimethylaniline (DMA) with various oxidants such as tert-butyl hydroperoxide (TBHP), peracetic acid (PAA), and meta-chloroperoxybenzoic acid (mCPBA), resulting N-methylaniline (MA) as a main product with N-methylformanilide (MFA) as a result of a free-radical chain process under air. The effect of electron-donating and electron-withdrawing substituents on the aromatic ring on the relative reactivity of the substrates and on the product composition (MA/MFA) was also studied and showed a significant impact on the catalytic N-demethylation reaction. Based on the Hammett correlation with ρ = −0.38 (PAA), −0.45 (mCPBA), and −0.63 (TBHP) for 1 and ρ = −0.38 (PAA) and −0.37 (mCPBA) for 2, an electrophilic intermediate is suggested as the key oxidant. Furthermore, the spectral investigation (UV-Vis) resulted in direct evidence for the formation of a high-valent oxomanganese(IV) and a transient radical cation intermediate, p-Me-DMA•+, suggesting that the initial step in the manganese-catalyzed oxidations is a fast electron-transfer between the amine and the high valent oxometal species. The mechanisms of the subsequent steps are discussed.

Funder

Ministry for Culture and Innovation, Development and Innovation Fund

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3