Synthesis of Green Magnetite/Carbonized Coffee Composite from Natural Pyrite for Effective Decontamination of Congo Red Dye: Steric, Synergetic, Oxidation, and Ecotoxicity Studies

Author:

Shemy Marwa H.12,Othman Sarah I.3,Alfassam Haifa E.3,Al-Waili Maha A.3,Alqhtani Haifa A.3,Allam Ahmed A.4,Abukhadra Mostafa R.25ORCID

Affiliation:

1. Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt

2. Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City 65211, Egypt

3. Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia

4. Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt

5. Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt

Abstract

Green magnetite/carbonized spent coffee (MG/CFC) composite was synthesized from natural pyrite and characterized as an adsorbent and catalyst in photo-Fenton’s oxidation system of Congo red dye (C.R). The absorption behavior was illustrated based on the steric and energetic parameters of the advanced Monolayer equilibrium model of one energetic site (R2 > 0.99). The structure exhibits 855 mg/g as effective site density which induces its C.R saturation adsorption capacity to 436.1 mg/g. The change in the number of absorbed C.R per site with temperature (n = 1.53 (293) to 0.51 (313 K)) suggests changes in the mechanism from multimolecular (up to 2 molecules per site) to multianchorage (one molecule per more than one site) processes. The energetic studies (ΔE = 6.2–8.2 kJ/mol) validate the physical uptake of C.R by MG/CFC which might be included van der Waals forces, electrostatic attractions, and hydrogen bonding. As a catalyst, MG/CFC exhibits significant activity during the photo-Fenton’s oxidation of C.R under visible light. The complete oxidation of C.R was detected after 105 min (5 mg/L), 120 min (10 mg/L), 135 min (15 mg/L), 180 min (20 mg/L), and 240 min (25 mg/L) using MG/CFC at 0.2 g/L dosage and 0.1 mL of H2O2. Increasing the dosage up to 0.5 g/L reduce the complete oxidation interval of C.R (5 mg/L) down to 30 min while the complete mineralization was detected after 120 min. The acute and chronic toxicities of the treated samples demonstrate significant safe products of no toxic effects on aquatic organisms as compared to the parent C.R solution.

Funder

Deanship of Scientific Research at Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3