PGM-Free Electrocatalytic Layer Characterization by Electrochemical Impedance Spectroscopy of an Anion Exchange Membrane Water Electrolyzer with Nafion Ionomer as the Bonding Agent

Author:

Pushkarev Artem S.123ORCID,Pushkareva Irina V.123ORCID,du Preez Stephanus P.1ORCID,Bessarabov Dmitri G.1ORCID

Affiliation:

1. HySA Infrastructure Center of Competence, Faculty of Engineering, North-West University, Private Bag X6001, Potchefstroom Campus 2531, South Africa

2. National Research Center “Kurchatov Institute” 1, Kurchatov sq., Moscow 123182, Russia

3. National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya Str., Moscow 111250, Russia

Abstract

Low-cost anion exchange membrane (AEM) water electrolysis is a promising technology for producing “green” high-purity hydrogen using platinum group metal (PGM)-free catalysts. The performance of AEM electrolysis depends on the overall overvoltage, e.g., voltage losses coming from different processes in the water electrolyzer including hydrogen and oxygen evolution, non-faradaic charge transfer resistance, mass transfer limitations, and others. Due to the different relaxation times of these processes, it is possible to unravel them in the frequency domain by electrochemical impedance spectroscopy. This study relates to solving and quantifying contributions to the total polarization resistance of the AEM water electrolyzer, including ohmic and charge transfer resistances in the kinetically controlled mode. The high-frequency contribution is proposed to have non-faradaic nature, and its conceivable nature and mechanism are discussed. The characteristic frequencies of unraveled contributions are provided to be used as benchmark data for commercially available membranes and electrodes.

Funder

Department of Science and Innovation (DSI), South Africa

HySA Infrastructure Centre of Competence, South Africa

President of the Russian Federation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3