Affiliation:
1. Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
2. Institute of Refining and Petrochemicals Technologies, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
Abstract
The dry reforming of methane is a highly popular procedure since it can transform two of the most abundant greenhouse gases, methane and carbon dioxide, into useful syngases that can be further processed into valuable chemicals. To successfully achieve this conversion for the effective production of syngas, an optimal catalyst with advantageous physicochemical features must be developed. In this study, a variety of Ni-based catalysts supported by zirconia alumina (5Ni-10Zr + Al) were prepared by using the impregnation approach. Different loadings of Fe promoter were used, and the performances of the resulting catalysts in terms of activity and stability were investigated. The catalyst used in this study had an active metal component made of 5% Ni and x% Fe supported on 10ZrO2 + Al2O3, where x = (1, 2, 3, and 4). The physicochemical characteristics of both freshly calcined and used catalysts were studied using a range of characterization techniques, such as: N2 adsorption–desorption isotherms, XRD, H2-TPR, Raman spectroscopy, TGA, and TEM. An investigation of the effects of the Fe promoter on the catalytic activity of the catalyst (5Ni + xFe-10Zr + Al) was conducted. Amongst the studied catalysts, the 5Ni + 3Fe-10Zr + Al catalyst showed the best catalytic activity with CH4 and CO2 conversions of 87% and 90%, respectively, and had an H2/CO ratio of 0.98.
Funder
Deanship for Research & Innovation, Ministry of Education in Saudi Arabia, King Saud University, Riyadh, Saudi Arabia
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献