Catalytic Pyrolysis of Hydrochar by Calcined Eggshells for Bioenergy Production: Improved Thermo-Kinetic Studies and Reduced Pollutant Emissions

Author:

Yang Shengshu12,Chen Zeliang12,Wang Jiaxiao12,Li Dong12,Luo Lei12ORCID,Liu Zhengang12

Affiliation:

1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Bioenergy production from hydrochar via catalytic thermal conversion is of increasing importance to easing the energy shortage. The catalytic pyrolysis characteristics of hydrochar derived from sawdust (HSD) with calcined eggshell (CES) were investigated by the thermogravimetric–Fourier transform infrared spectroscopy–mass spectrometry (TG-FTIR-MS) method. Kinetic and thermodynamic parameters were determined by two iso-conversional model-free methods, namely, Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO). The results demonstrated that HSD exhibited a high fuel quality, with elevated carbon content (54.03%) and an increased high calorific value (21.65 MJ Kg−1). CES significantly enhanced the pyrolysis behavior of HSD by promoting the secondary cracking of organic vapors under the synergistic effect of CaO and mineral elements. Compared to non-catalytic pyrolysis, the residual mass and average activation energy of HSD-CES decreased by 29.61% and 14.10%, respectively, and the gaseous products of H2 and CO from HSD-CES increased by 26.14% and 22.94%, respectively. Furthermore, the participation of CES effectively suppressed the emission of pollutants in the HSD pyrolysis process, with a 27.13% reduction in CH4, a 22.76% reduction in HCN, and a 20.28% reduction in NH3. This study provides valuable guidance on the potential use of hydrochar for renewable energy production.

Funder

Shandong Province Major Scientific and Technological Innovation Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3