One-Pot Conversion of Furfural to γ-Valerolactone over Co- and Pt-Doped ZSM-5 Catalysts

Author:

Tolek Weerachon1,Auppahad Warucha1,Weerachawanasak Patcharaporn2,Mekasuwandumrong Okorn3,Praserthdam Piyasan1,Panpranot Joongjai14ORCID

Affiliation:

1. Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

2. Department of Chemistry, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

3. Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand

4. Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

γ-Valerolactone (GVL) is one of the useful biomass compounds produced via different reaction pathways from hemicellulose. In this study, Co- and Pt-doped/ZSM-5 catalysts with different Co loadings (0–10 wt.%) and Pt loadings (0.5–2 wt.%) were prepared by impregnation method and employed in a one-pot conversion of furfural to GVL. The yield of GVL increased with increasing reaction temperature from 100 to 140 °C. At the reaction temperature of 120 °C, higher amounts of secondary products such as AL and IPL can be converted to GVL, especially on the Co- and Pt-modified ZSM-5 catalysts. Compared to the non-modified H-ZSM-5 (GVL yield 35.4%), Co- and Pt-doped ZSM-5 catalysts exhibited much higher yield of GVL with the 1%Pt/ZSM-5 catalyst showing the highest yield of GVL at 85.4% at 120 °C and 1 bar N2 without the use of liquid acid or external H2 supply. The catalyst performances were correlated to the physicochemical properties of the catalysts such as the amount and type of acid sites. The NH3-TPD and in situ FTIR spectra of pyridine adsorption results revealed that Co- and Pt-loaded on ZSM-5 enhanced Lewis and weak acid sites, which are beneficial for the reaction. The results present a simple strategy to obtain high GVL yield under relatively mild conditions.

Funder

National Research Council of Thailand

Thailand Science Research and Innovation

Chulalongkorn University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3