Optimizing Citrate Combustion Synthesis of A-Site-Deficient La,Mn-Based Perovskites: Application for Catalytic CH4 Combustion in Stoichiometric Conditions

Author:

Osti Andrea1ORCID,Rizzato Lorenzo1,Cavazzani Jonathan1,Glisenti Antonella1ORCID

Affiliation:

1. Department of Chemical Sciences, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy

Abstract

LaMnO3-based perovskites are widely recognized as promising catalysts for several oxidation reactions, but the final physicochemical and catalytic properties can be greatly influenced by the adopted synthesis procedure. In this work, a series of A-site-deficient perovskites of composition La0.8MnO3 and La0.8Mn0.9B0.1O3 (B = Ni, Cu) were prepared through the citrate combustion route with variations in two synthesis parameters: a citric acid/metal cations molar ratio (CA/M) of either 1.1 or 1.5 and either acidic (given by HNO3 + citric acid) or neutral (after NH3 addition) pH of the precursor solution. The obtained samples were characterized by XRD, H2-TPR, O2-TPD, N2 physisorption, SEM-EDX and XPS. Acidic pH coupled with a CA/M ratio of 1.1 clearly emerged superior among all the other combinations of the two parameters, resulting in smaller crystallite size, higher surface area and porosity, enhanced Mn4+ reducibility and the ability to release oxygen species; these features were even further improved by B-site substitution with 10 mol% Ni and Cu cations. The synthesized catalysts were tested in CH4 oxidation to CO2 under stoichiometric O2, confirming the great superiority of samples prepared in acidic pH with a CA/M ratio of 1.1. Ni and Cu doping had a beneficial effect on catalytic activity, which, however, was more evident for less optimized perovskites (acidic pH and CA/M ratio of 1.5), without significance differences among the two dopants.

Funder

European Union HORIZON EUROPE

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3