Effect of Ruthenium Modification of g-C3N4 in the Visible-Light-Driven Photocatalytic Reduction of Cr(VI)

Author:

Xuan Truong Nguyen1ORCID,Thi Dien Nguyen1,Ngoc Tue Nguyen1,Quoc Khanh Dang2,Németh Miklós3,Mukhtar Shoaib4,Horváth Ottó4ORCID

Affiliation:

1. School of Chemical Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet Street, Hai Ba Trung Distric, Hanoi 100000, Vietnam

2. School of Materials Science and Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet Street, Hai Ba Trung Distric, Hanoi 100000, Vietnam

3. Centre for Energy Research, Surface Chemistry and Catalysis Department, Konkoly-Thege Street 29-33, H-1121 Budapest, Hungary

4. Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary

Abstract

Graphitic carbon nitride (g-C3N4) is a promising heterogeneous photocatalyst in the visible range. It can be used, among others, for reductive conversion of the toxic hexavalent chromium occurring in various wastewaters. Its photocatalytic efficiency, however, has to be improved, which can be realized by modification with different dopants or co-catalysts forming heterojunctions. In our work, ruthenium-modified g-C3N4 has been prepared by ultrasonic impregnation of the pristine g-C3N4, which was synthesized from thiourea. The morphology, microstructure, and optical properties of the photocatalysts were characterized by XRD, SEM, FT-IR, TEM, XPS, and DRS. Their compositions were analyzed by EDS and XPS measurements, indicating 0.5% and 1.4% Ru, due to the different penetrating depths. XPS study showed mainly +2 for the oxidation state of Ru. DRS analysis indicated a slight change in both the CB (from −1.14 to −1.22 eV) and the VB (from 1.49 to 1.56 eV) energies of Ru/g-C3N4, compared to those of g-C3N4. The photocatalytic Cr(VI) reduction efficacy increased from 50.1 to 96.8%. Low pH (=2) was preferred for the photocatalytic Cr(VI) reduction due to the favorable surface charge and E(Cr(VI)/Cr(III)) redox potential. Ru modification proved to be promising for improving the photocatalytic performance of g-C3N4.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3