Whole-Cell PVA Cryogel-Immobilized Microbial Consortium LE-C1 for Xanthan Depolymerization

Author:

Zhurishkina Elena V.12,Eneyskaya Elena V.12,Shvetsova Svetlana V.12,Yurchenko Lyudmila V.1,Bobrov Kirill S.12,Kulminskaya Anna A.12ORCID

Affiliation:

1. Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 1, mkr. Orlova roshcha, Gatchina 188300, Russia

2. Kurchatov Genome Center—PNPI, 1, mkr. Orlova roshcha, Gatchina 188300, Russia

Abstract

Xanthan is an extracellular heteropolysaccharide produced by the bacteria Xanthomonas campestris. Due to its unique properties, the polysaccharide and its derivatives are widely used in many industries, from food to biomedicine and oil production, that demands an efficient xanthan depolymerization method to adapt this polysaccharide for various applications. Unlike the known chemical approaches, biological methods are considered to be more environmentally friendly and less energy intensive. In laboratory conditions, we have isolated a bacterial community capable of reducing the xanthan viscosity. Identification of the individual isolates in the microbial community and their testing resulted in the consortium LE-C1, consisting of two microorganisms Paenibacillus phytohabitans KG5 and Cellulosimicrobium cellulans KG3. The specific activities of the overall xanthanase and auxiliary enzymes that may be involved in the xanthan depolymerization were as follows: xanthanase, 19.6 ± 0.6 U/g; β-glucosidase, 3.4 ± 0.1 U/g; α-mannosidase, 68.0 ± 2.0 U/g; β-mannosidase, 0.40 ± 0.01 U/g; endo-glucanase, 4.0 ± 0.1 U/g; and xanthan lyase, 2.20 ± 0.07 U/mg. In order to increase the efficiency of xanthan biodegradation, the LE-C1 whole cells were immobilized in a poly(vinyl alcohol) cryogel. The resulting regenerative biocatalyst was able to complete xanthan depolymerization within 40 cycles without loss of activity or degradation of the matrix.

Funder

Genome Research Center Development Program “Kurchatov Genome Center—PNPI”

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3