Intercalated-Laurate-Enhanced Photocatalytic Activities of Ni/Cr-Layered Double Hydroxides

Author:

Zhang Xuehua12,Jiang Zili12,Sun Fengting12,Chen Yuhan3,Shi Changrong45,Zhang Zhanying45,Qian Guangren12,Ruan Xiuxiu12

Affiliation:

1. School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China

2. Center of Green Urban Mining & Industry Ecology, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China

3. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, No. 333 Longteng Road, Shanghai 261600, China

4. School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia

5. Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4000, Australia

Abstract

Laurate (LA−)-intercalated nickel–chromium-layered double hydroxides (LDHs) were synthesized using the co-precipitation method and investigated as a potential photocatalyst for methylene orange (MO) degradation. For comparison, a series of LDHs with various molar ratios of Ni2+(or Mg2+)/Cr3+(or Fe3+)/LA−(or CO32−) were prepared. X−ray diffraction (XRD) and element analysis showed that Ni/Cr(2/1)−1.0 LA LDH had the most ordered crystal structure, and showed the same photocatalytic decolorization performance as Mg/Cr(2/1)−1.0LA LDH towards MO, which was significantly superior to Ni/Cr−CO3 LDH, Ni/Fe(2/1)−1.0LA LDH, and Ni/Cr−CO3 LDH with LA−, and Cr3+ with LA−. The photocatalytic removal rate of MO with the initial concentration of 100 mg/L by Ni/Cr(2/1)−1.0LA LDH (0.5 g/L) could be up to 80% with UV light irradiation for 3 h, which was almost twice higher than that of the sorption test. The photocatalytic reaction was in accordance with the pseudo-first-order kinetics, which implied that the catalytic process took place on the surface of the catalyst. All the results indicate the photodegradation of MO by Ni/Cr−LA LDHs was enhanced by the sorption of MO onto the intercalated LA− in the interlayer. The free radical capture experiments suggest that the main role of the photocatalytic mechanism of Ni/Cr−LA LDHs could be the •O2− with high oxidation activity produced by the electron-hole pairs of LDH, as excited by UV light. Additionally, the •O2− further reacted with the adjacent MO molecule pre-sorbed on the intercalated LA.

Funder

National Key Research and Development Program of China

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3