Detection and Degradation Studies of Nile Blue Sulphate Using Electrochemical and UV-Vis Spectroscopic Techniques

Author:

Saleem Muhammad Nadir,Shah AfzalORCID,Ullah Naimat,Nisar JanORCID,Iftikhar Faiza Jan

Abstract

An efficient and reliable electrochemical sensing platform based on COOH-fMWCNTs modified GCE (COOH-fMWCNTs/GCE) was designed for the detection of nanomolar concentration of Nile Blue Sulphate (NBS). In comparison to the bare GCE, the electrochemical sensing scaffold considerably enhanced the peak current response of NBS dye as confirmed from the results of voltammetric investigations. The electrochemical approach of detecting NBS in the droplet of its solution dried over the surface of modified electrode validated, the role of modifier in enhancing the sensing response. Under optimized conditions, the designed electrochemical platform demonstrated a wide linearity range (0.03–10 μM) for NBS, with LOD of 1.21 nM. Moreover, COOH-fMWCNTs/GCE was found reproducible and stable as confirmed by repeatability and inter-day durability tests. The selectivity of the designed sensing matrix was ensured by anti-interference tests. The photocatalytic degradation of NBS dye was carried out by using TiO2 nanoparticles as photocatalyst in the presence of H2O2. UV-visible spectroscopic studies revealed 95% photocatalytic degradation of NBS following a pseudo-first-order kinetics with a rate constant of 0.028 min−1. These findings were supported electrochemically by monitoring the photocatalytically degraded dye at the designed sensing platform. The color variation and final decolorization of the selected dye in water served as a visual indicator of the degradation process. To conclude, the designed sensing platform immobilized with COOH-fMWCNTs imparted improved selectivity and sensitivity to detect and to, monitor the photocatalytic degradation of NBS.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3