The Quick Removal of Toxic Dye Molecules by an Efficient Adsorptive BiOI/Bi2MoO6 Heterostructure

Author:

Onyedika Tasie Ebenezer12ORCID,Xu Mengying1234,Deng Yichao2,Liu Yang2,Li Lian25,Tremblay Pier-Luc125ORCID,Zhang Tian12356ORCID

Affiliation:

1. Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, China

2. School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, China

3. School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China

4. Zhejiang Xingguang Pharmaceutical Co., Ltd., Shaoxing 312400, China

5. Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, China

6. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China

Abstract

Adsorption is a low-energy, economical, and efficient method for pollutant removal from water. Because of their unique structure, large specific surface area (SSA), and non-toxicity, bismuth-based semiconductors, usually researched for the photodegradation of organic molecules, are also excellent for dark adsorption processes. Here, a three-dimensional adsorbent with a heterostructure with a hydrangea-like shape made of Bi2MoO6 (BMO) and BiOI (BOI) was synthesized by a one-pot solvothermal process and investigated for the adsorption of toxic dyes. BOI/BMO with an I-to-Mo ratio of 2.0 adsorbed 98.9% of the model pollutant rhodamine B (RhB) within 5 min with a maximum adsorption capacity of 72.72 mg/g in the dark at room temperature. When compared to pure BMO, the BOI2/BMO heterostructure was 14.1 times more performant because of its flower-like morphology with multiple planes, an SSA that was 1.6-fold larger, increased porosity, the formation of heterojunctions, and a negative surface charge attracting RhB. Further investigation indicated that adsorption by BOI2/BMO fitted the pseudo-second-order kinetic and the Langmuir isotherm models. In addition, the thermodynamic analysis showed that it was a spontaneous exothermic process probably relying on physisorption. Thus, the BOI/BMO adsorbent developed here is promising for the fast removal of toxic dyes from industrial wastewater.

Funder

Wuhan University of Technology

Shaoxing 330 overseas elites Plan

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3