Optimized Conditions for Preparing a Heterogeneous Biocatalyst via Cross-Linked Enzyme Aggregates (CLEAs) of β-Glucosidase from Aspergillus niger

Author:

da Cunha Thiago M.,Mendes Adriano A.ORCID,Hirata Daniela B.,Angelotti Joelise A. F.

Abstract

This study mainly aims to find the optimal conditions for immobilizing a non-commercial β-glucosidase from Aspergillus niger via cross-linked enzyme aggregates (CLEAs) by investigating the effect of cross-linking agent (glutaraldehyde) concentration and soy protein isolate/enzyme ratio (or spacer/enzyme ratio) on the catalytic performance of β-glucosidase through the central composite rotatable design (CCRD). The influence of certain parameters such as pH and temperature on the hydrolytic activity of the resulting heterogeneous biocatalyst was assessed and compared with those of a soluble enzyme. The catalytic performance of both the soluble and immobilized enzyme was assessed by hydrolyzing ρ-nitrophenyl-β-D-glucopyranoside (ρ-NPG) at pH 4.5 and 50 °C. It was found that there was a maximum recovered activity of around 33% (corresponding to hydrolytic activity of 0.48 U/mL) in a spacer/enzyme ratio of 4.69 (mg/mg) using 25.5 mM glutaraldehyde. The optimal temperature and pH conditions for the soluble enzyme were 60 °C and 4.5, respectively, while those for CLEAs of β-glucosidase were between 50 and 65 °C and pH 3.5 and 4.0. These results reveal that the immobilized enzyme is more stable in a wider pH and temperature range than its soluble form. Furthermore, an improvement was observed in thermal stability after immobilization. After 150 days at 4 °C, the heterogeneous biocatalyst retained 80% of its original activity, while the soluble enzyme retained only 10%. The heterogeneous biocatalyst preparation was also characterized by TG/DTG and FT-IR analyses that confirmed the introduction of carbon chains via cross-linking. Therefore, the immobilized biocatalyst prepared in this study has improved enzyme stabilization, and it is an interesting approach to preparing heterogeneous biocatalysts for industrial applications.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)–Brazil

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3