Catalytic Biomaterials for Atrazine Degradation

Author:

Diviesti Karla,Holz Richard C.

Abstract

In this paper, triazine hydrolase from Arthrobacter aurescens TC1 (TrzN) was successfully immobilized in alginate beads (TrzN:alginate), alginate beads coated in chitosan (TrzN:chitosan), and tetramethylorthosilicate (TMOS) gels using the sol–gel method (TrzN:sol–gel) for the first time. TrzN:alginate and TrzN:chitosan hydrolyzed 50 µM of atrazine in 6 h with negligible protein loss with an ~80% conversion rate. However, the TrzN:sol–gel biomaterial converted >95% of a 50 µM atrazine solution in an hour with negligible protein loss. The treatment of each of these biomaterials with trypsin confirmed that the catalytic activity was due to the encapsulated enzyme and not surface-bound TrzN. All three of the biomaterials showed potential for long-term storage and reuse, with the only limitation arising from the loss of protein in the storage buffer for the TrzN:alginate and TrzN:chitosan biomaterials, not the denaturation of the encapsulated TrzN. TrzN:sol–gel stood out, with ~100% activity being retained after 10 consecutive reactions. Additionally, the materials stayed active in methanol concentrations <10%, suggesting the ability to increase the solubility of atrazine with organic solvents. The structural integrity of the TrzN:alginate and TrzN:chitosan materials became limiting in extreme pH conditions, while TrzN:sol–gel outperformed WT TrzN. Overall, the TrzN:sol–gel biomaterial proved to be the best atrazine dichlorination biocatalyst. As sol–gels can be cast into any desired shape, including pellets, which can be used in columns, the TrzN:sol–gel biomaterial provides a new avenue for the design of bioremediation methodologies for the removal of atrazine from the environment.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3